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Abstract. The color glass condensate is a theory of the dynamical properties of partons in the Regge limit
of QCD: xBj → 0, Q2 � Λ2

QCD = fixed and the center of mass energy squared s → ∞. We provide a brief
introduction to the theoretical ideas underlying the color glass condensate and discuss the application of
these ideas to high energy scattering in QCD.

1 Introduction

The study of the properties of the strong interactions
in the asymptotic Bjorken limit of momentum transfer
squared Q2 → ∞, the center of mass energy squared
s → ∞, and the Bjorken variable xBj ≈ Q2/s = fixed
has proved to be one of the most creative ideas in theo-
retical physics [1]. Relatively little work has been done in
the other high energy limit, namely, xBj → 0, s → ∞ and
Q2 = fixed. This limit of the strong interactions, which
we shall call the Regge limit, was studied intensively in
the 60’s and indeed led eventually to string theory. The
reason these studies fell into disfavor in the strong inter-
actions was that there was no small parameter in these
studies (in modern parlance, Q2 ≤ Λ2

QCD).
With the advent of the collider era, we can now probe

a wide window of physics where s � Q2 � Λ2
QCD. In

fact, this “window” describes the bulk of the high energy
cross-section. One therefore has finally the possibility of
studying the properties of the Regge limit of the theory
using weak coupling methods. In this limit, the hadron be-
haves like matter that is dense but weakly coupled – not
dissimilar to much of condensed matter physics [2,3].

In Regge asymptotics, the number of partons increases
rapidly due to QCD bremsstrahlung. This growth is de-
scribed, in the leading logarithmic approximation in x, by
the BFKL equation [4]. Since the typical size of the par-
tons in this limit is of order 1/Q2, the hadron becomes
closely packed when the number of partons is of order
R2Q2. In fact, this corresponds to an occupation number
f ∼ 1/αS. When the density of partons is of this order, re-
pulsive many body “recombination” and screening effects
compete with QCD bremsstrahlung leading to a satura-
tion of the number of partons in the hadron’s wavefunction
[5–7]. The saturation of partons of different sizes happens
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at different values of x. The scale at which this occurs
is the saturation scale Qs(x) – a dynamically generated
semi-hard scale that controls the dynamics of physics in
this regime of QCD.

In the language of the operator product regime (OPE),
the line Q ≡ Qs(x) in the x–Q2 plane denotes the regime
beyond which (when approached from high Q2) higher
twist effects become important. Recall that the OPE is
best formulated in the Bjorken limit where higher twists
are power suppressed and can be forgotten. The opposite
is true in the Regge limit. Since the number of twist op-
erators grows (nearly) exponentially with the twist, the
OPE quickly becomes unwieldy. Thus to describe physics
in this regime we need a new organizing principle in QCD
beyond the OPE.

2 A classical effective theory
for high energy QCD

A way out was suggested when it was realized that the
physics of high parton densities could be formulated as a
classical effective theory [8]. When a quantum field the-
ory is formulated on the light cone, one realizes that there
is a formal Born–Oppenheimer separation between large
x and small x modes [9] which are respectively the slow
and fast modes in the effective theory. Thus on the time
scale of the “wee” parton small x fields, the large x par-
tons can be viewed as static charges. Since these are color
charges, they cannot be integrated out of the theory but
must be viewed as sources of color charge for the dynami-
cal wee fields. With this dynamical principle in mind, one
can write down an effective action for wee partons in QCD
at high energies. The generating functional of wee partons
has the form

Z[j] =
∫

[dρ] WΛ+ [ρ]

{∫ Λ+

[dA]δ(A+)eiS[A,ρ]−j·A∫ Λ+
[dA]δ(A+)eiS[A,ρ]

}
(1)
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where the wee parton action has the form

S[A, ρ] =
−1
4

∫
d4x F 2

µν (2)

+
i

Nc

∫
d2x⊥dx−δ(x−)Tr

(
ρ(x⊥)U−∞,∞[A−]

)
.

In (1), ρ is a classical color charge density (more on this
shortly) of the static sources and W [ρ] is a weight func-
tional of sources (which sit at momenta k+ > Λ+: note
that x = k+/P+

hadron). The sources are coupled to the dy-
namical wee gluon fields (which in turn sit at k+ < Λ+)
via the gauge invariant term1 which is the first term on
the RHS of (2). The second term in (2) is the QCD field
strength tensor squared – thus the wee gluons are treated
in full generality in this effective theory, which is formu-
lated in the light cone gauge A+ = 0. The source j is an
external source – derivatives taken with respect to this
source (with the source then put to zero) generate corre-
lation functions in the usual fashion.

We have not justified thus far why the sources are clas-
sical. The argument for this is subtle and follows from
a coarse graining of the effective action to only include
modes of interest. For large nuclei, or at small x, the wee
partons couple to a large number of sources. For a large
nucleus, it can be shown explicitly that this source density
is classical [11]. Further, it was conjectured that the weight
functional for a large nucleus was a Gaussian in the source
density (corresponding to the quadratic Casimir operator)
[8,12]. This was shown explicitly recently to be the cor-
rect one – albeit with small corrections for SU(Nc) coming
from the Nc − 2 higher Casimir operators [11].

For a large nucleus, the variance of the Gaussian, the
color charge squared per unit area µ2

A, proportional to
A1/3, is a large scale – and is the only scale in the effective
action2. Thus for µ2

A � Λ2
QCD, αS(µ2

A) � 1, and one
can compute the properties of the theory in (1) in weak
coupling.

By evaluating the saddle point of the action in (2), one
can compute the classical distribution of gluons in the nu-
cleus. The Yang–Mills equations can be solved analytically
to obtain the classical field of the nucleus as a function of
ρ: Acl.(ρ) [8,12,13]. From the generating functional in (1),
one obtains for the two point correlator

〈AA〉 =
∫

[dρ] WΛ+ [ρ] Acl.(ρ) Acl.(ρ) . (3)

From this expression one can determine, for Gaussian
sources, the occupation number φ = dN/πR2/dk2

⊥dy of
wee partons in the classical field of the nucleus. One
finds that for k⊥ � Q2

s , one has the Weizsäcker–Williams
spectrum φ ∼ Q2

s/k2
⊥, while for k⊥ ≤ Qs, one has a

complete resummation to all orders in k⊥, which gives

1 This is not the only possible gauge invariant coupling. An
alternative form is given in [10] – it can be shown to reproduce
BFKL more efficiently.

2 µ2
A is simply related in the classical theory to the saturation

scale Q2
s via the relation Q2

s = αSNcµ
2
A ln(Q2

s/Λ2
QCD)

φ ∼ 1
αS

ln(Qs/k⊥). (The behavior at low k⊥ can, more
accurately, be represented as 1

αS
Γ (0, z) where Γ is the in-

complete Gamma function and z = k2
⊥/Q2

s .) A very nice
expression for the classical field of the nucleus containing
these two limits was presented by Triantafyllopoulos at
this conference [14].

We are now in a position to discuss why a high en-
ergy hadron behaves like a color glass condensate [2].
The “color” is obvious since the degrees of freedom, the
partons, are colored. It is a glass because the stochastic
sources (frozen on time scales much larger than the wee
parton time scales) induce a stochastic (space-time de-
pendent) coupling between the partons under quantum
evolution (to be discussed in the next section) – this is
analogous to a spin glass. Finally, the matter is a conden-
sate since the wee partons have large occupation numbers
(of order 1/αS) and have momenta peaked about Qs. As
we will discuss, these properties are enhanced by quan-
tum evolution in x. The classical field retains its structure
– while the saturation scale grows: Qs(x′) > Qs(x) for
x′ < x.

3 Quantum evolution à la JIMWLK and BK

Small fluctuations about the effective action in (2) were
first considered in [15]. It was discovered that these gave
large corrections of order αS ln(1/x). In particular, this
suggested that the Gaussian weight functional was frag-
ile under quantum evolution of the sources3. A Wilso-
nian renormalization group (RG) approach was devel-
oped to systematically treat these corrections [16]. The
basic ingredients of this approach are as follows. Begin
with the generating functional in (1) at some Λ+, with
an initial source distribution W [ρ]. Perform small fluc-
tuations about the classical saddle point of the effec-
tive action, integrating out momentum modes in the re-
gion Λ′+ < k+ < Λ+, ensuring that Λ′+ is such that
αS ln(Λ+/Λ′+) � 1. The action reproduces itself at the
new scale Λ′+, albeit with a charge density ρ′ = ρ + δρ,
and WΛ+ [ρ] −→ WΛ′+ [ρ′]. The change of the weight func-
tional W [ρ] with x is described by the JIMWLK non-linear
RG equation [16] which we shall not write explicitly here.

The JIMWLK equations form an infinite hierarchy
(analogous to the BBGKY hierarchy in statistical me-
chanics) of ordinary differential equations for the gluon
correlators 〈A1A2 · · ·An〉Y , where Y = ln(1/x) is the ra-
pidity. The expectation value of an operator O is defined
to be

〈O〉Y =
∫

[dα]O[α]WY [α] , (4)

where α = 1
∇2

⊥
ρ. The corresponding JIMWLK equation

for this operator is

∂〈O[α]〉Y

∂Y
(5)

3 We will return to this point in our discussion of the Cronin
effect in deuteron–gold collisions at RHIC.
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=
〈

1
2

∫
x⊥,y⊥

δ

δαa
Y (x⊥)

χab
x⊥,y⊥ [α]

δ

δαb
Y (y⊥)

O[α]
〉

Y

.

χ here is a non-local object expressed in terms of path
ordered (in rapidity) Wilson lines of α [2]. This equation
is analogous to a (generalized) functional Fokker–Planck
equation, where Y is the “time” and χ is a generalized
diffusion coefficient. This equation illustrates the stochas-
tic properties of operators in the space of gauge fields at
high energies. For the gluon density, which is proportional
to a two point function 〈αa(x⊥)αb(y⊥)〉, one recovers the
BFKL equation in the limit of low parton densities.

As mentioned, the JIMWLK equations are master
equations for n point correlators. Two point correlators
of Wilson lines are proportional to four point correlators
and so on. The theory is conformal so it is not inconceiv-
able that it is exactly solvable but this has not been done
thus far. Preliminary numerical solutions have been ob-
tained recently [17] but much work remains in that direc-
tion. There is a mean field solution deep in the saturation
regime [18] where one can show that the weight functional
is a Gaussian – albeit a non-local Gaussian with a variance
proportional to k2

⊥ for k2
⊥ < Q2

s .
In the limit of large Nc and large A (α2

SA1/3 � 1),
one can show that the hierarchy closes for the two point
correlator of Wilson lines since the expectation value of
the product of traces of Wilson lines factorizes into the
product of the expectation values of the traces:

〈Tr(VxV †
z )Tr(VzV

†
y )〉 −→ 〈Tr(VxV †

z )〉 〈Tr(VzV
†
y )〉 , (6)

where the subscript x = P exp
(∫

dz−αa(z−, x⊥)T a
)
.

Here P denotes path ordering in x− and T a is the SU(3)
generator in the adjoint representation. In Mueller’s dipole
picture [20], the cross-section for a dipole scattering off a
target can be expressed in terms of these two point dipole
operators as [19]

σqq̄N (x, r⊥) = 2
∫

d2b NY (x, r⊥, b) , (7)

where NY , the imaginary part of the forward scattering
amplitude, is defined to be NY = 1− 1

Nc
〈Tr(VxV †

y )〉Y . Note
that the size of the dipole, r⊥ = x⊥ − y⊥ and b = (x⊥ +
y⊥)/2. The JIMWLK equation for the two point Wilson
correlator is identical in the large A, large Nc mean field
limit to an equation derived independently by Balitsky
and Kovchegov – the Balitsky–Kovchegov equation [21],
which has the operator form

∂NY

∂Y
= ᾱS KBFKL ⊗ {NY − N 2

Y

}
. (8)

Here KBFKL is the well known BFKL kernel. When N �
1, the quadratic term is negligble and one has BFKL
growth of the number of dipoles; when N is close to unity,
the growth saturates. The approach to unity can be com-
puted analytically [22]. The BK equation is the simplest
equation including both the bremsstrahlung responsible
for the rapid growth of amplitudes at small x as well as

the repulsive many body effects that lead to a saturation
of this growth.

A saturation condition which fixes the amplitude at
which this change in behavior is significant, say N =
1/2, determines the saturation scale. One obtains Q2

s =
Q2

0 exp(λY ), where λ = cαS with c ≈ 4.8. The saturation
condition affects the overall normalization of this scale but
does not affect the power λ. In fixed coupling, the power
λ is large and there are large pre-asymptotic corrections
to this relation – which die off only slowly as a function
of Y . BFKL running coupling effects change the behavior
of the saturation scale completely – one goes smoothly at
large Y to Q2

s = Q2
0 exp(

√
2b0c(Y + Y0)) where b0 is the

coefficient of the one-loop QCD β-function. The state of
the art computation of Qs is the work of Triantafyllopou-
los, who obtained Qs by solving NLO-resummed BFKL
in the presence of an absorptive boundary (which corre-
sponds to the CGC) [23]. The pre-asymptotic effects are
much smaller in this case and the coefficient λ ≈ 0.25 is
very close to the value extracted from saturation model
fits to the HERA data [24].

No analytical solution of the BK equation is known in
the entire kinematic region, but there have been several
numerical studies at both fixed and running coupling [26,
25,27]. These studies suggest that the solutions have a
soliton like structure and that the saturation scale has the
behavior discussed here. Geometrical scaling of solutions
is seen for a wide window in rapidities. Running coupling
effects, as suggested, are important and make the results
of the computations more physically plausible.

The soliton like structure is no accident, as was dis-
covered by Munier and Peschanski [28] who noticed that
the BK-equation, in a diffusion approximation, bore a for-
mal analogy to the FKPP equation describing the prop-
agation of unstable non-linear wavefronts [30]. In addi-
tion, the full BK-equation lies in the universality class of
the FKPP equation enabling one to extract the univer-
sal properties of these equations (for instance the leading
pre-asymptotic terms in the expression for the saturation
scale). The power of this analogy was made manifest [29]
when it was realized that a stochastic generalization of the
FKPP equation – the sFKPP equation – could provide in-
sights into impact parameter dependent fluctuations [31]
in high energy QCD beyond the BK-equation. This is a
very active area of research now, with several groups hunt-
ing for the pomeron loops responsible for these fluctua-
tions. The (rapidly evolving) state of the art of this sub-
ject is discussed in the talk by Iancu in these proceedings
[32].

To summarize, the color glass condensate is a weak
coupling effective theory describing the properties of
hadron wavefunctions in QCD at high energies. Renor-
malization group equations – the JIMWLK equations –
describe the behavior of multi-parton correlations in the
hadron wavefunction as a function of rapidity. The theory
has stochastic features closely analogous to the propaga-
tion of unstable non-linear wave fronts in statistical me-
chanics. Recent work [32] has focused on trying to under-
stand possible corrections beyond JIMWLK at low parton
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densities – which may be responsible for pomeron loops.
We now turn to the applications of this theory to hadronic
scattering.

4 Hadronic scattering and k⊥ factorization
in the color glass condensate

Collinear factorization is the perturbative QCD mecha-
nism to compute hard scattering. For instance, the cross-
section in pp collisions for di-jets with invariant mass
M2 ∼ s � Λ2

QCD, is a convolution of structure functions
from each of the nucleons (evaluated at the scale M2)
times the probability that collinear partons with k⊥ = 0
from the nuclei scatter to produce the di-jet. The structure
functions are universal since they can be extracted from
one set of experiments and input into another. Factoriza-
tion theorems prove that this universality holds modulo
power corrections in M2. At collider energies, a new win-
dow opens up where Λ2

QCD � M2 � s. In principle, cross-
sections in this window can be computed in the collinear
factorization language – however, one needs to sum up
large logarithmic corrections in s/M2. An alternative for-
malism is that of k⊥ factorization [33,34], where one has
a convolution of k⊥ dependent “un-integrated” gluon dis-
tributions from the two hadrons with the hard scattering
matrix. In this case, the in-coming partons from the wave-
functions have non-zero k⊥. It was suggested by Levin et
al. [35] that at high energies the typical k⊥ is the satura-
tion scale Qs. The rapidity dependence of the unintegrated
distributions is given by the BFKL equation. However, un-
like the structure functions, it has not been proven that
these unintegrated distributions are universal functions.

At small x, both the collinear factorization and k⊥ fac-
torization limits can be understood in a systematic way
in the framework of the color glass condensate. Rather
than a convolution of probabilities, one has instead a col-
lision of classical gauge fields. The expectation value of an
operator O can be computed as

〈O〉Y =
∫

[dρ1] [dρ2] Wx1 [ρ1] Wx2 [ρ2] O(ρ1, ρ2) , (9)

where Y = ln(1/xF) and xF = x1 − x2. All operators at
small x can be computed in the background classical field
of the nucleus at small x. Quantum information, to lead-
ing logarithms in x, is contained in the source functionals
Wx1(x2)[ρ1(ρ2)]. The operator O can be expressed in terms
of gauge fields Aµ[ρ1, ρ2](x).

Inclusive gluon production in the CGC is computed
by solving the Yang–Mills equations [Dµ, Fµν ]a = Jν,a,
where

Jν = ρ1 δ(x−)δν+ + ρ2 δ(x+)δν− . (10)

with initial conditions given by the Yang–Mills fields of
the two nuclei before the collision. These are obtained
self-consistently by matching the solutions of the Yang–
Mills equations on the light cone [36]. The initial con-
ditions are determined by requiring that singular terms

in the matching vanish. Since we have argued in Sect. 3
that we can compute the Yang–Mills fields in the nuclei
before the collision, the classical problem is in principle
completely solvable. Quantum corrections not enhanced
by powers of αS ln(1/x) can be included systematically.
The terms so enhanced are absorbed into the weight func-
tionals W [ρ1,2].

Hadronic scattering in the CGC can therefore be stud-
ied through a systematic power counting in the density of
sources in powers of ρ1,2/k2

⊥;1,2. This power counting in
fact is more relevant at high energies than whether the
in-coming projectile is a hadron or a nucleus. In addition,
one can begin to study the applicability of both collinear
and k⊥ factorization at small x in this approach.

4.1 Gluon and quark production
in the dilute/pp regime: (ρp1/k2

⊥ ρp2/k2
⊥ � 1)

The power counting here is applicable either to a proton at
small x, or to a nucleus (whose parton density at high en-
ergies is enhanced by A1/3) at large transverse momenta.
The relevant quantity here is Qs, which, as one may recall,
is enhanced both for large A and small x. So as long as
k⊥ � Qs � ΛQCD, one can consider the proton or nucleus
as being dilute.

To lowest order in ρp1/k2
⊥ and ρp2/k2

⊥, one can com-
pute inclusive gluon production analytically. This was first
done in the Aτ = 0 gauge [36] and subsequently in the
Lorentz gauge ∂µAµ = 0 [37]. At large transverse mo-
menta, Qs � k⊥, the scattering can be expressed in a k⊥-
factorized form. The inclusive cross-section is expressed
as the product of two unintegrated (k⊥ dependent) distri-
butions times the matrix element for the scattering. The
comparison of this result to the collinear pQCD gg → gg
process and the k⊥-factorized gg → g one was performed
in [38]. At this order, the result is equivalent to the per-
turbative QCD result first derived by Gunion and Bertsch
[39]. This result for gluon production is substantially mod-
ified, as we shall discuss shortly, by high parton density
effects in the nuclei.

k⊥ factorization is a good assumption at large mo-
menta for quark pair production. This was worked out in
the CGC approach by François Gelis and myself [40]. The
result for inclusive quark pair production can be expressed
in k⊥-factorized form as

dσ1

dypdyqd2p⊥d2q⊥

∝
∫

d2k1⊥
(2π)2

d2k2⊥
(2π)2

δ(k1⊥ + k2⊥ − p⊥ − q⊥) (11)

×ϕ1(k1⊥)ϕ2(k2⊥)
Tr

(∣∣m−+
ab (k1, k2; q, p)

∣∣2)
k2
1⊥k2

2⊥
,

where φ1 and φ2 are the unintegrated gluon distributions
in the projectile and target respectively (with the gluon

distribution defined as xG(x, Q2) =
∫ Q2

0 d(k2
⊥) φ(x, k⊥)).

The matrix element Tr
(∣∣m−+

ab (k1, k2; q, p)
∣∣2) is identical
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to the result derived in the k⊥-factorization approach [33,

34]. In the limit |k1⊥| , |k2⊥| → 0,
Tr

(|m−+
ab (k1,k2;q,p)|2)

k2
1⊥k2

2⊥
is

well defined – after integration over the azimuthal angles
in (11), one obtains the usual matrix element |M|2gg→qq̄,
recovering the lowest order pQCD collinear factorization
result.

4.2 Gluon and quark production in the
semi-dense/pA region (ρp/k2

⊥ � 1 ρA/k2
⊥ ∼ 1)

The power counting here is best applicable to asymmet-
ric systems such as proton–nucleus collisions, which nat-
urally satisfies the power counting for a wide range of
energies. Of course, as one goes to extremely high en-
ergies, it is conceivable that the parton density locally
in the proton can become comparable to that in the nu-
cleus. In the semi-dense/pA case, one solves the Yang–
Mills equations [Dµ, Fµν ] = Jν with the light cone sources
Jν,a = δν+ δ(x−) ρa

p(x⊥)+δν− δ(x+) ρa
A(x⊥), to determine

the gluon field produced – to lowest order in the proton
source density and to all orders in the nuclear source den-
sity. The inclusive gluon production cross-section, in this
framework, was first computed by Kovchegov and Mueller
[41] and shown to be k⊥ factorizable in [42]. In [43], the
gluon field produced in pA collisions was computed ex-
plicitly in Lorentz gauge ∂µAµ = 0. Our result is exactly
equivalent to that of Dumitru and McLerran in Aτ = 0
gauge [48]. The well known “Cronin” effect is obtained
in our formalism and can be simply understood in terms
of the multiple scattering of a parton from the projectile
with those in the target. The Cronin effect and its evolu-
tion with rapidity will be discussed in the next section.

Quark production in p/D–A collisions can be com-
puted with the gauge field in Lorentz gauge [44]. The field
is decomposed into the sum of “regular” terms and “sin-
gular” terms; the latter contain δ(x+). The regular terms
are the cases where
(a) a gluon from the proton interacts with the nucleus and
produces a qq̄-pair outside, and
(b) the gluon produces the pair which then scatters off
the nucleus. Naively, these would appear to be the only
possibilities in the high energy limit where the nucleus is
a Lorentz contracted pancake. However, in the Lorentz
gauge, one has terms identified with the singular terms
in the gauge field which correspond to the case where the
quark pair is both produced and re-scatters in the nucleus!

Our result for quark pair production were discussed
by Gelis and Fujii [45] at this conference. Related work
for single quark production was also discussed by Tuchin
[46]4. Unlike gluon production, neither quark pair pro-
duction nor single quark production is strictly k⊥ factor-
izable. The pair production cross-section can however still
be written in k⊥-factorized form as a product of the un-
integrated gluon distribution in the proton times a sum
of terms with three unintegrated distributions, φg,g, φqq̄,g

4 In addition, see related work in [47] – for a recent review
of k⊥ factorization in heavy quark production, see [66].

and φqq̄,qq̄. These are respectively proportional to two
point, three point and four point correlators of the Wil-
son lines we discussed previously. For instance, the distri-
bution φqq̄,g is the product of fundamental Wilson lines
coupled to a qq̄-pair in the amplitude and adjoint Wilson
lines coupled to a gluon in the complex conjugate ampli-
tude. For large transverse momenta or large mass pairs,
the three point and four point distributions collapse to
the unintegrated gluon distribution, and we recover the
previously discussed k⊥-factorized result for pair produc-
tion in the dilute/pp limit. Single quark distributions are
straightforwardly obtained and depend only on the two
point quark and gluon correlators and the three point cor-
relators. For Gaussian sources, as in the MV model, these
two, three and four point functions can be computed ex-
actly as discussed in [44,45].

The results for gluon and quark production in p/D–
A collisions, coupled with the previous results for inclu-
sive and diffractive [51,65,64,67] distributions in DIS sug-
gest an important new paradigm. At small x in DIS and
hadron colliders, previously interesting observables such
as quark and gluon structure functions are no longer the
right observables to capture the relevant physics. Instead
they should be replaced by these dipole and multipole cor-
relators of Wilson lines that seem ubiquitous in all high
energy processes and are similarly gauge invariant and
process independent. The renormalization group running
of these operators is a powerful and sensitive harbinger of
new physics.

4.3 Gluon and quark production in the dense/AA
region (ρA1/k2

⊥ = ρA2/k2
⊥ ∼ 1)

In nucleus–nucleus collisions, ρ1,2/k2
⊥ ∼ 1. There is no

small expansion parameter and one has thus far not been
able to compute particle production analytically in the
CGC. Unlike gluon production in the pp and pA cases,
k⊥ factorization breaks down in the AA case [69,68]. k⊥
factorization breaking terms are O(1) and there are a large
number of these. This is because the classical field comes
in with a factor 1/g – thus each insertion on the gluon is of
order O(1). A significant consequence is that one cannot
factor the quantum evolution of the initial wavefunctions
into unintegrated gluon distributions unlike the pA case.

Nevertheless, there is a systematic way to include small
x effects in the AA case. The problem of nuclear collisions
is well defined in weak coupling and can be solved numer-
ically [69–71]. The numerical simulations thus far assume
Gaussian initial conditions as in the MV model. These are
good initial conditions for central gold–gold collisions at
RHIC where the typical x is of order 10−2. They are not
good initial conditions at the LHC where the typical x at
central rapidities will be at least an order of magnitude
lower. In that case, one has to use solutions of JIMWLK
RG equations [17]. The numerical lattice formalism of [69]
is ideal for computing particle production in the forward
light cone by matching the Wilson lines from each of the
nuclei on the light cone.
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We restrict ourselves to discussing numerical solutions
with Gaussian initial conditions. The saturation scale Qs
(which is an input in the numerical solutions in this ap-
proximation) and the nuclear radius R are the only param-
eters in the problem. The energy and number respectively
of gluons released in a heavy ion collision of identical nu-
clei can therefore be simply expressed as

1
πR2

dE

dη
=

cE

g2 Q3
s ,

1
πR2

dN

dη
=

cN

g2 Q2
s , (12)

where (up to 10% statistical uncertainty) we compute nu-
merically cE = 0.25 and cN = 0.3. Here η is the space-time
rapidity.

The number distributions of gluons can also be com-
puted in this approach. Remarkably, one finds that
(a) the number distribution is infrared finite, and
(b) the distribution is well fit by a massive Bose–Einstein
distribution for k⊥/Qs < 1.5 GeV with a “temperature”
of ∼ 0.47Qs and by the perturbative distribution Q4

s/k4
⊥

for k⊥/Qs > 1.5.

5 What the CGC tells us about matter
produced in D–A and A–A collisions at
RHIC

Gluon distributions computed in pA collisions in the MV
model exhibit the Cronin effect [50,51]. One can show that
this is exactly equivalent to the Glauber picture where
partons from the proton acquire transverse momenta from
multiple scattering off partons in the target [49,43]. How-
ever, unlike the Glauber picture, quantum evolution in the
CGC (see the discussion in Sect. 3) predicts that the Gaus-
sian approximation breaks down completely when the x2
in the target is such that ln(1/x2) ∼ 1/αS. In other words,
as one produces gluons further and further forward in the
proton fragmentation region (recall xF = x1 − x2), the
Glauber picture should break down. Indeed, that is pre-
cisely the trend that is observed in the RHIC deuteron–
gold experiments [55]. The rapid depletion of the Cronin
effect is likely due to the onset of BFKL evolution, while
the subsequent saturation of this trend reflects the onset
of saturation effects [42,27,53,54,43,57]. Further, there
is a natural explanation for the dramatic inversion of the
centrality dependence that one observes in the RHIC data-
it arises due to the onset of BFKL anomalous dimensions-
crudely put, the nuclear bremsstrahlung spectrum changes
from Q2

s/k3
⊥ −→ Qs/k⊥. Finally, an additional piece of ev-

idence that can be adduced in support of the CGC picture
is the broadening of azimuthal correlations [59] for which
preliminary data now exists from the STAR collaboration
[58]. These ideas can be tested conclusively in photon and
di-lepton production in D–A collisions at RHIC [60–62].

We have learnt several things from applying the CGC
to D–A collisions. Firstly, the Gaussian MV model works
at mid-rapidities x ∼ 10−2 quantum evolution à la BFKL

is not significant at these values of x. The MV model is
therefore a good model of the initial conditions for A–A
collisions at RHIC. (More on this to come shortly.) The
MV model is not a good model as one goes forward in
the deuteron direction – at small x of x ∼ 10−3 or lower.
Quantum evolution effects, seen explicitly in solutions of
the BK equation, are important. They will therefore pro-
vide the initial conditions for heavy ion collisions at the
LHC.

The MV model when applied to heavy ion collisions
correctly predicted the initial multiplicity at RHIC [69].
It was also remarkably successful in explaining rapidity
distributions and the centrality dependence of multiplic-
ities [73]. However, it soon became clear that the CGC
alone was not sufficient to explain the RHIC data since
(a) it could not explain the RHIC v2 data [70] and
(b) it predicted a suppression in D–A collisions at RHIC
(the MV model notwithstanding) which disagreed with
the RHIC data [56]. This failure of the CGC (here mean-
ing quantum evolution as opposed to the MV model which
has no evolution) thus strongly suggested that final state
interactions are important at RHIC – which corroborates
the remarkable success of hydrodynamic models.

Why do predictions of bulk features – the multiplicity
[69] and rapidity and centrality dependence [73] do so well
then? If hydrodynamic behavior sets in early, and viscous
effects are small, the bulk features from the initial condi-
tions will be preserved by hydrodynamic flow. This is seen
in the hydrodynamic simulations of Hirano and Nara [74].
Thus one has the beginnings of a consistent phenomeno-
logical picture, though many puzzles remain. We do not
understand why thermalization is early (more on that in
the next section) and we do not have a quantitative under-
standing of what the viscous corrections are. In general,
we do not have a good understanding of the properties of
the strongly interacting quark–gluon plasma; better data
and better calculations will be helpful.

The RHIC data on the multiplicity (approximately
1000 hadrons in one unit of rapidity) and transverse en-
ergy (approximately 500 GeV for central rapidities) of
produced hadrons combined with (12) place strong con-
straints on what Qs can be. If Qs is too small, we find,
absurdly, that the initial transverse energy is less than
the final measured transverse energy. If Qs is too large,
we find that the initial multiplicity of gluons is greater
than the final multiplicity of hadrons. While there is no
obvious theorem that prohibits the initial gluon multiplic-
ity being greater than the final hadron multiplicity, such
a situation is unlikely in all statistical/hydrodynamic sce-
narios of the RHIC collisions. These constraints therefore
allow us to place the bound [72]

1.3 < Qs < 2 GeV. (13)

This bound is consistent with an A1/3 extrapolation of the
Golec-Biernat–Wüsthoff fit of Q2

s to the HERA data [24].
A simple extrapolation gives Qs ≈ 1.4 GeV.
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6 Thermalization: from CGC to QGP

The transition to the QGP from the CGC remains as
an outstanding theoretical problem. Due to the rapid ex-
pansion of the system, the occupation number of modes
falls well below one on time scales of order 1/Qs. From
these times onwards, one expects the canonical classical
approach to break down – well before thermalization. On
the other hand, for elliptic flow from hydrodynamics to
be significant, the conventional wisdom is that thermal-
ization should set in early. A necessary condition is that
momentum distributions should be isotropic. The CGC
initial conditions are very anisotropic with 〈p⊥〉 ∼ Qs and
〈pz〉 ∼ 0. How does this isotropization take place? All es-
timates of final state re-scattering of partons formed from
the melting CGC, both from 2 → 2 processes [75] and
2 → 3 processes [76] suggest thermalization takes longer
than what the RHIC collisions seem to suggest – in the
latter case, τthermal ∼ 1

α
13/5
S

1
Qs

, which at RHIC energies

gives τthermal ∼ 2–3 fm.
Recently, it has been suggested that collective instabil-

ities [77], analogous to the well known Weibel instabilities
in plasma physics, can speed up thermalization [78,79].
Starting from very anisotropic (CGC-like) initial condi-
tions, these instabilities drive the system to isotropy on
very short time scales, of order 1/Qs in some estimates.
What is the relation of this language of instabilities and
that of our classical field simulations? One possibility is
that our particular initial conditions, the non-linearities
of the fields and the rapid expansion of the system kill
the growth of instabilities. Another intriguing possibility
is that small violations of boost invariance provide the
seeds for the instabilities. Further, to properly study ther-
malization, one should better understand the interaction
of high momentum (particle) and low momentum (field)
degrees of freedom and their evolution. This leads to a real
time renormalization group description [80].

An equally interesting problem is that of chemical
equilibration. At high energies, the initial state in a heavy
ion collision is dominated by gluons. Are quarks produced
in sufficient numbers for the system to reach chemical
equilibrium (where the ratio of gluons to quarks is ex-
pected to be 32/21Nf )? One would expect, in weak cou-
pling, that the production of quarks would be suppressed.
However, since the fields from the CGC are of order 1/g,
strong fields could drive the system to chemical equilib-
rium. First steps have been taken to study this problem
[81,82] which involves numerically solving the Dirac equa-
tion in the background field of the two nuclei. One expects
further progress on this problem in the near future.

7 Open issues in the CGC

The CGC is a framework to think about problems in high
energy QCD. There are many loose ends. A topic of much
excitement among theorists recently is whether there are
contributions beyond the JIMWLK equations, in particu-
lar those that generate “pomeron loops”. These contribu-
tions are likely at low to moderate parton densities where

impact parameter fluctuations are large. This topic is ad-
dressed in the talk by Iancu [32]. We addressed the issue of
k⊥ factorization and why “dipole” and “multipole” opera-
tors may be more relevant variables at high energies than
structure functions. Can one derive factorization theorems
in this framework analogous to those derived previously
for collinear factorization? Turning to phenomenology, we
have the beginnings of a consistent phenomenological pic-
ture of the CGC and the QGP in D–A and A–A collisions.
For this to become a quantitative science, we need to un-
derstand the problem of thermalization from first princi-
ples in QCD. It is a difficult task but by no means an
impossible one.
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